GDR1.0 General Design Requirements

GDR1.1

Requirement: In order to ensure compatibility with major development efforts in industry and academia, and to avoid duplication of effort, the System will adhere to Internet and W3C standards.

Priority: 1. **Source:** World

Cognizance: IU, JPL, USC

Status:

Verification: Review

GDR1.2

Requirement: The user interface shall be extensible to allow new application

components to be added as needed.

Priority: 1 Source: World Cognizance: IU

Status:

Verification: Addition of application component successful

GDR1.3

Requirement: The system shall adhere to the following standards: WSDL,

WSIL, SOAP, WS-SEC.

Priority: 1 Source: World Cognizance: IU

Status:

Verification: Review

GDR1.4

Requirement: The system shall provide distributed access and control methods

for earthquake simulations application

(http://www.servogrid.org/slide/GEM/Interop/AWS.doc)

Priority: 1 Source: World Cognizance: IU

Status:

Verification: Review

GDR1.5

Requirement: The functionality of the system shall include but not be limited to job submission, job monitoring, file transfer, session management, and security.

Priority: 1 Source: World Cognizance: IU

Status:

Verification: Successful implementation of all components

GDR1.6

Requirement: The aforementioned functionality shall be supported on multiple backend resources that are managed through a single browser interface, as outlined in: (http://www.servogrid.org/sllide/GEM/Interop/AWS.doc)

Priority: 2 Source: World Cognizance: IU

Status:

Verification: Demonstration through single browser interface

GDR1.7

Requirement: The system shall provide methods to dynamically configure data flow between component applications.

Priority: 1

Source: World **Cognizance:** IU, JPL, USC

Status:

Verification: Successful dynamic configuration

GDR1.8

Requirement: All resources will be assigned an URI for unique identification.

Priority: 1
Source: World

Cognizance: IU, JPL, USC

Status:

Verification: Existence of appropriate URI

GDR1.9

Requirement: The system must adhere to standards from Grid Forum and related

bodies.

Priority: 1
Source: IU, JPL

Cognizance: IU

Status:

Verification: Documented adherence to applicable standards

GDR1.10

Requirement: The system design shall allow the easy integration of third-party

web services. **Priority: 2** Source: World Cognizance: IU

Status:

Verification: Successful integration of a third party web service

GDR1.11

Requirement: All initial Web Service implementation will be designed to move to OGSA (Open Grid Service architecture) as the latter specification matures.

Priority: 2 Source: IU, JPL Cognizance: IU

Status:

Verification: Successful implementation in OGSA

GDR1.12

Requirement: The system shall provide information services needed to locate

specific backend resources.

Priority: 1 Source: World Cognizance: IU

Status:

Verification: Demonstration of location of back end resources

User-Based Requirements UBR1.10

UBR1.1

Requirement: All earthquake simulation applications shall be deployed in an

accessible environment.

Priority: 1 Source: World

Cognizance: IU, JPL, Brown, UCD, USC

Status:

Verification: Demonstration

UBR1.2

Requirement: The system shall be accessible through all standard browsers

(Netscape 4 and later, IR 5 and later).

Priority: 1 Source: World Cognizance: IU, JPL

Status:

Verification: Test and demonstration of function in all browsers

UBR1.3

Requirement: The system shall dynamically create user interfaces based on the service interfaces provided by the application manager.

Priority: 1 **Source:** World

Cognizance: IU, JPL, USC

Status:

Verification: Demonstration

UBR1.4

Requirement: Users shall be able to customize their interfaces by composing their system views from the user interfaces to the services that interest them.

Priority: 2 Source: World Cognizance: IU

Status:

Verification: Review

UBR1.5

Requirement: The system will provide the user the ability to select desired system resources.

Priority: 1 Source: World Cognizance: IU

Status:

Verification: Review

UBR1.6

Requirement: The user interface will allow the user to integrate job submittal, input preparation, and visualization activities.

Priority: 1

Source: World **Cognizance:** IU

Status:

Verification: Review

UBR1.7

Requirement: The system shall provide context sensitive help.

Priority: 2 Source: World Cognizance: IU

Status:

Verification: Demonstration

ADR1.0 Application Developer-Based Requirements

ADR1.0

Requirement: The system shall easily allow application developers to add and

manage their applications.

Priority: 2

Source: Developers **Cognizance:** IU, JPL

Status:

Verification: Successful addition and management by developer

ADR1.2

Requirement: As applications mature and change, the system shall allow the

application manager to update the invocation interfaces.

Priority: 1

Source: Developers **Cognizance:** IU, JPL

Status:

Verification: Successful update of interface

DH1.0 Data Handling

DH1.1

Requirement: The system shall be capable of handling distributed heterogeneous

datasets. **Priority:** 1

Source: World

Cognizance: IU, JPL, UCI, USC

Status:

Verification: Demonstration of access of multiple distributed datasets

DH1.2

Requirement: The system shall provide seamless data access such that the location of the data and method of storage is transparent to the user.

Priority: 2

Source: JPL, Brown, IU, UCD, UCI, USC

Cognizance: JPL, USC, IU

Status:

Verification: Data access from multiple sources through a single web page

DH1.3

Requirement: Dynamically generated database queries based on user input.

Priority: 1

Source: JPL, UCI, Brown, UCD, SCEC

Cognizance: JPL, USC, UCI

Status:

Verification: Test

DT1.0 Data Types

DT1.0

Requirement: Data types the system will support, but are not limited to the following: GPS position time series, GPS station velocities, InSAR difference maps, seismicity, and faults.

Priority: 1

Source: JPL, Brown, UCD, SCEC **Cognizance:** UCI, GSC, SCEC

Status:

Verification: Access of all mentioned data types

DT1.2

Requirement: Data types the system may support include, but are not limited to the following: Rheological structure, and simulation archive.

Priority: 2

Source: JPL, UCI, Brown, UCD, SCEC

Cognizance: UCI, GSC, SCEC

Status:

Verification: Access of all mentioned data types

DT1.3

Requirement: Data types the system may support include, but are not limited to

the following: laser strain, borehold strain, and gravity.

Priority: 3 Source: JPL

Cognizance: JPL, Caltech, SCEC

Status:

Verification: Access of all mentioned data types

SB1.0Supported Back-ends

SB1.1

Requirement: Application codes will be supported by the following platforms:

UNIX, LINUX clusters, SGI Origin, Alpha, SP3.

Priority: 1

Source: JPL, Brown

Cognizance: Individual investigator

Status:

Verification: Complies and matches test suite

SB1.2

Requirement: Application codes may be supported by the following platforms:

Windows. **Priority:** 2

Source: JPL, UCD

Cognizance: Individual investigator

Status:

Verification: Compiles and matches test suite

P1.0 Performance

P1.1

Requirement: The system configuration shall employ high-speed datalinks.

Priority: 3

Source: JPL, UCD Cognizance: JPL

Status:

Verification: Test

P1.2

Requirement: The system configuration shall employ low-latency job

scheduling. **Priority:** 1

Source: JPL, UCD, Brown, UCI

Cognizance: IU

Status:

Verification: Sanguine investigator

P1.3

Requirement: The PARK code shall execute on 104 CPU machine with 400,000 elements, 50,000 time steps in the same time as the baseline code.

Priority:

Source: Brown Cognizance: Brown

Status:

Verification: Demonstration

P1.4

Requirement: GeoFEST shall link to PYRAMID and shall execute on a parallel

machine. **Priority:**

Source: Brown **Cognizance:** Brown

Status:

Verification: Demonstration

P1.5

Requirement: GeoFEST shall execute on a 880 CPU processor machine (assuming availability) with 16M elements and 1000 time steps in the same time as the baseline code using the Pyramid AMR libraries.

Priority: Source: JPL Cognizance: JPL

Status:

Verification: Demonstration

P1.6

Requirement: Virtual California shall execute with N=700 segments for 10,000 times steps in 1 hour or less with MPI parallel implementation, running on M-

processor machine with 2 GB of memory per CPU, an a speedup of approximately M/2 on up to 256 processors.

Priority: Source: UCD Cognizance: UCD

Status:

Verification: Demonstration

P1.7

Requirement: Performance will be monitored, measured, and documented.

Priority: 1 Source: JPL

Cognizance: JPL, UCD, Brown

Status:

Verification: Demonstration

A1.0 Applications

A1.1

Requirement: The system will provide the capability to run the following application codes: GEOFEST, PARK, DISLOC, SIMPLEX, VC, DAHMM,

PDPC. **Priority:** 1

Source: JPL, MIT, UCD

Cognizance: JPL

Status:

Verification: Demonstration

C1.0 Collaboration capabilities

C1.1

Reference: The system will provide the capability for application codes to access

real-time data streams.

Priority: 2 Source: World Cognizance: IU

Status:

Verification: Successful test

C1.2

Reference: The system will provide tools to visualize output data from

application codes.

Priority: 2 **Source:** World

Cognizance: IU, JPL, Brown

Status:

Verification: Demonstration

C1.3

Reference: The system will provide the capability for users to collaborate in real-

time on model development.

Priority: 2 Source: World Cognizance: IU, JPL

Status:

Verification: Demonstration of collaboration

S1.0 Security

S1.1

Reference: The system shall provide user authentication, access control, message

integrity, and communication privacy.

Priority: 1 Source: IU Cognizance: IU

Status:

Verification: Review

S1.2

Reference: The system shall have multiple user roles: application user,

application manager, system manager.

Priority: 1 Source: IU Cognizance: IU

Status:

Verification: Review

S1.3

Reference: The application user will be allowed to use all available system

services defined in GDR1.5, unless disallowed by system managers.

Priority: 1

Source: IU Cognizance: IU

Status:

Verification: Review

S1.4

Reference: Application managers shall have user rights and shall also be allowed to create and modify application interfaces as permitted by system managers.

Priority: 1 Source: IU Cognizance: IU

Status:

Verification: Review

S1.5

Reference: System managers shall have all rights of users and application

managers, plus additional rights as described above.

Priority: 1 Source: IU Cognizance: IU

Status:

Verification: Review

E1.0 Errors

E1.1

Reference: The system shall log the time, location and nature (if known) of all

service call failures.

Priority: 1 Source: IU Cognizance: IU

Status:

Verification: Documentation